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Let S be a finite set. An involution om S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so that there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is
weight-preserving in that wt ι(s) = wt s for all s ∈ S then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let
[n] = {1, 2, . . . , n}.

And denote the symmetric difference of sets A,B by

A∆B = (A \ B) ∪ (B \ A).

Proposition

If n ≥ 1 then
n∑

k=0

(−1)k
(
n

k

)
= 0.

Proof.
Let S = {A ⊆ [n]}. Give S the sign function

sgnA = (−1)#A.

∴
∑
A∈S

sgnA =
n∑

k=0

∑
A∈S,#A=k

(−1)k =
n∑

k=0

(−1)k
(
n

k

)
.

Define involution ι : S → S by ι(A) = A∆{n}. So ι has no fixed
points and is sign reversing. Thus the sum equals #S ι = 0.



Let G = (V ,E ) be a graph. Given a set S , a vertex coloring
κ : V → S is proper if

uv ∈ E =⇒ κ(u) ̸= κ(v).

Let P be the positive integers and x = {x1, x2, . . .}. Given a proper
vertex coloring κ : V → P we let

xκ =
∏
v∈V

xκ(v).

Stanley’s chromatic symmetric function is

X (G ) = X (G ; x) =
∑
κ

xκ

where the sum is over all proper κ : V → P.



Let (P,≤P) be a poset. Say P is (m + n)-free if it contains no
induced subposet isomorphic to [m] ⊎ [n] where [n] = {1, 2, . . . , n}.
The incomparability graph of P is inc(P) = (P,E ) where uv ∈ E if
neither u ≤P v nor v ≤P u. Let {eλ} and {sλ} be the elementary
and Schur bases for symmetric functions, respectively. Given a
basis {bλ}, a symmetric function f (x) is b-positive if the
coefficients in its expansion in this basis are nonnegative.

Ex.

P =

u

v w

x is (3 + 1)-free

inc(P) =

u

v w

x

Conjecture (Stanley-Stembridge (3 + 1)-free Conjecture)

If P is a (3 + 1)-free poset then X (inc(P); x) is e-positive.

The Method.

1. Expand X (inc(P)) in terms of sλ using Gasharov’s P-tableaux.

2. Expand the sλ in terms of eλ using Jacobi-Trudi determinants.

3. Use a sign-reversing involution to cancel the negative terms.



Given poset (P,≤P), a P-tableau T of shape λ is a bijective filling
of the Young diagram of λ with the elements of P such that

1. rows are increasing with respect to ≤P , and
2. columns are nondecreasing with respect to ≤P .

Ex.
P = P2,2 =

a b

u v Some P-tableaux: a u

b v

b v

a

u

Some non-P-tableaux: a b

u v

b v

u

a

Let PT(P) and PTλ(P) be the set of all P-tableau and those of
shape λ, respectively.

Theorem (Gasharov)

If P is (3 + 1)-free and X (inc(P)) =
∑

λ cλsλ then

cλ = #PTλ(P).



The transpose of partition λ is λt = diagonally reflect λ.

Ex. If λ = then λt = .

Theorem (dual Jacobi-Trudi determinant)

If λ = (λ1, λ2, . . .) then sλt =

∣∣∣∣∣∣∣
eλ1 eλ1+1 · · ·
eλ2−1 eλ2 · · ·
...

...
...

∣∣∣∣∣∣∣.
So writing X (inc(P)) first in sλ and then in eµ has signed
coefficients which count pairs (T , π) where T ∈ PTλ(P) and
π ∈ Sλ1 is the permutation from the determinant expansion.
Ex. If P = P2,2 then #PTλ(P) = 4 for λ = (22), (2, 12), (14).

X (inc(P)) = 4s22 + 4s2,12 + 4s14

= 4

∣∣∣∣ e2 e3
e1 e2

∣∣∣∣+ 4

∣∣∣∣ e3 e4
e0 e1

∣∣∣∣+ 4e4

= 4e22 − 4e3,1 + 4e3,1 − 4e4 + 4e4

= 4e22 .



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUI) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUI then X (inc(P); x, t) is e-positive.



Let P be an NUI, and so a poset on [n], and let T be a P-tableau.
An inversion in T is a pair i , j ∈ [n] with

1. i < j ,

2. i is in a lower row than j , and

3. i and j are incomparable in P.

Let InvT be the set of inversions of T and invT = # InvT .

Ex.

P =

1

2 3 4

5

T =
1 3 5
2
4

InvT = {23, 45}

Theorem (Shareshian-Wachs)

If P is an NUI and X (inc(P); x, t) =
∑

λ cλ(t)sλ then

cλ(t) =
∑

T∈PTλ(P)

t invT .



Let #P = n and λ ⊢ n. The eh of largest subscript appearing in
the determinant for sλ is at the end of the first row. And in that
case h is the hooklength of the (1, 1) box of the diagram of λ. So
if h = n then λ is a hook. Furthermose en only occurs with the
permutation π = c , 1, 2, . . . , c − 1 where c = λ1. So if λ is a hook
then let the sign of a P-tableau T of shape λ be

sgnT = sgnλ = (−1)c−1.

If λ is a hook then its arm and leg are the boxes in the first row,
respectively first column, except (1,1).

Ex. λ = A A A A
L
L

sλ =

∣∣∣∣∣∣∣∣∣∣
e3 e4 e5 e6 e7
e0 e1 e2 e3 e4
0 e0 e1 e2 e3
0 0 e0 e1 e2
0 0 0 e0 e1

∣∣∣∣∣∣∣∣∣∣
π = 51234 sgnλ = (−1)5−1 = 1.

A = arm, L = leg.



Let P be an NUI on [n] and T be a P-tableau. Call k ∈ [n]
movable in T if it can be moved from the arm to the leg of T or
vice-versa so that

1. the resulting tableau T ′ is a P-tableau, and

2. InvT = InvT ′.

Ex.

P =

1

2 3 4

5

T =
1 3 5
2
4

InvT = {23, 45}

3 is moveable with T ′ = 1 5
3
2
4

. 5 is moveable with T ′ = 1 3
2
5
4

.

2 and 4 are not moveable.



Lemma (Hamaker-S-Vatter)

If k is moveable in T , then there is a unique position to which it
can be moved.

If k is moveable in T then let T k be the result of moving k .
Define a map ι on P-tableau T of hook shape by

ι(T ) =

{
T k if k is the smallest integer which is moveable in T ,
T if no element in T is moveable.

Theorem (Hamaker-S-Vatter)

Let P be any NUI on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook
P-tableaux.

2. If T is fixed by ι then it has shape 1n.

3. The coefficient cn(t) of en in X (inc(P); x, t) has nonnegative
coefficients. It is the generating function by inv of P-tableaux
of column shape with no moveable elements.



Acyclic orientations.
An orientation O of a graph G is obtained by replacing each edge
uv ∈ G by one of the arcs u⃗v or v⃗u. Call O acyclic if it has no
directed cycles. If V = [n] then an ascent of O is an arc ı⃗ȷ with
i < j , and we let ascO be the number of ascents of O.

Theorem (Stanley,Shareshian-Wachs)

If P is an NUI on [n] and X (inc(P); x, t) =
∑

λ cλ(t)eλ, then∑
λ with s parts

cλ(t) =
∑

O with s sinks

tascO .

So if λ = (n) then cn(t) =
∑

O with 1 sink t
ascO . Given a P-tableau

T of shape (1n) we define an orientation O of G = incP by
orienting each edge ij of G so that

ı⃗ȷ is an arc of O iff ij ∈ InvT .

Conjecture (Hamaker-S-Vatter)

For any NUI, the map T 7→ O above is an inv-asc preserving
bijection from P-tableaux with m moveable elements to acyclic
orientations of inc(P) with m + 1 sinks.



Related work.
Shareshian and Wachs used an involution which is similar to, but
not the same as, the involution for en in their determination of the
coefficient of pn in X (inc(P); x, t).

There have been other applications of The Method The height of
a poset P, htP, is the number of elements in a longest chain. If P
is an NUI then htP is the bounce number of the corresponding
Dyck path. Harada and Precup proved the (3 + 1)-free conjecture
for X (inc(P); x, t) when htP = 2 using Hessenberg varieties. Cho
and Huh gave a combinatorial proof of this result using The
Method. Cho and Hong used The Method to prove the
(3 + 1)-free conjecture for X (inc(P); x) when htP = 3. Finding a
proof for X (inc(P); x, t) when htP = 3 is still open, but certain
special cases have been done using involutions by Cho and Hong,
and by Wang usint the inverse Kostka matrix in place of the
Jacobi-Trudi determinant.
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