Chromatic Symmetric Functions and Sign-Reversing Involutions

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

BIRS Workshop on Interactions between Hessenberg Varieties, Chromatic Functions, and LLT Polynomials Sign-reversing involutions

The (3+1)-free Conjecture

The coefficient of e_n

Other results and future work

Let S be a finite set. An *involution* om S is a bijection $\iota: S \to S$ with

$$\iota^2 = \mathrm{id}$$
.

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is *signed* so that there is a function

$$\operatorname{sgn}: S \to \{+1, -1\}.$$

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have $\operatorname{sgn} s = +1$, and

2. for all 2-cycles (s, t) we have sgn s = - sgn t.

If ι is a sign-reversing involution on S then

$$\sum_{s\in S} \operatorname{sgn} s = \#S^{\iota}$$

where # is cardinality and S^{ι} is the fixed-point set of ι . Suppose R is a ring and weight S by a function $\operatorname{wt} : S \to R$. If ι is weight-preserving in that $\operatorname{wt} \iota(s) = \operatorname{wt} s$ for all $s \in S$ then

$$\sum_{s\in S}(\operatorname{sgn} s)(\operatorname{wt} s) = \sum_{s\in S^{\iota}}\operatorname{wt} s.$$

Let

$$[n] = \{1, 2, \ldots, n\}.$$

And denote the *symmetric difference* of sets A, B by

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

Proposition If $n \ge 1$ then

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Proof.

Let $S = \{A \subseteq [n]\}$. Give S the sign function

$$\operatorname{sgn} A = (-1)^{\#A}$$

$$\therefore \sum_{A \in S} \operatorname{sgn} A = \sum_{k=0}^{n} \sum_{A \in S, \#A=k} (-1)^{k} = \sum_{k=0}^{n} (-1)^{k} {n \choose k}.$$

Define involution $\iota : S \to S$ by $\iota(A) = A\Delta\{n\}$. So ι has no fixed points and is sign reversing. Thus the sum equals $\#S^{\iota} = 0$.

Let G = (V, E) be a graph. Given a set S, a vertex coloring $\kappa : V \to S$ is *proper* if

$$uv \in E \implies \kappa(u) \neq \kappa(v).$$

Let \mathbb{P} be the positive integers and $\mathbf{x} = \{x_1, x_2, \ldots\}$. Given a proper vertex coloring $\kappa : V \to \mathbb{P}$ we let

$$\mathbf{x}^{\kappa} = \prod_{\mathbf{v} \in V} x_{\kappa(\mathbf{v})}.$$

Stanley's chromatic symmetric function is

$$X(G) = X(G; \mathbf{x}) = \sum_{\kappa} \mathbf{x}^{\kappa}$$

where the sum is over all proper $\kappa: V \to \mathbb{P}$.

Let (P, \leq_P) be a poset. Say P is (m + n)-free if it contains no induced subposet isomorphic to $[m] \uplus [n]$ where $[n] = \{1, 2, ..., n\}$. The *incomparability graph of* P is inc(P) = (P, E) where $uv \in E$ if neither $u \leq_P v$ nor $v \leq_P u$. Let $\{e_\lambda\}$ and $\{s_\lambda\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\{b_\lambda\}$, a symmetric function $f(\mathbf{x})$ is *b*-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge (3 + 1)-free Conjecture) If *P* is a (3 + 1)-free poset then $X(inc(P); \mathbf{x})$ is e-positive. **The Method.**

- 1. Expand X(inc(P)) in terms of s_{λ} using Gasharov's P-tableaux.
- 2. Expand the s_{λ} in terms of e_{λ} using Jacobi-Trudi determinants.
- 3. Use a sign-reversing involution to cancel the negative terms.

Given poset (P, \leq_P) , a *P*-tableau *T* of shape λ is a bijective filling of the Young diagram of λ with the elements of *P* such that

- 1. rows are increasing with respect to \leq_P , and
- 2. columns are nondecreasing with respect to \leq_P .

Let PT(P) and $PT_{\lambda}(P)$ be the set of all *P*-tableau and those of shape λ , respectively.

Theorem (Gasharov)

If P is (3+1)-free and $X(\operatorname{inc}(P)) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ then

 $c_{\lambda} = \# \mathsf{PT}_{\lambda}(P).$

The *transpose* of partition λ is $\lambda^t =$ diagonally reflect λ .

Theorem (dual Jacobi-Trudi determinant)

Ex. If $\lambda =$ then $\lambda^t =$.

If
$$\lambda = (\lambda_1, \lambda_2, \ldots)$$
 then $s_{\lambda^t} = \begin{vmatrix} e_{\lambda_1} & e_{\lambda_1+1} & \cdots \\ e_{\lambda_2-1} & e_{\lambda_2} & \cdots \\ \vdots & \vdots & \vdots \end{vmatrix}$

So writing X(inc(P)) first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \text{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_1}$ is the permutation from the determinant expansion. **Ex.** If $P = P_{2,2}$ then $\# \text{PT}_{\lambda}(P) = 4$ for $\lambda = (2^2), (2, 1^2), (1^4)$.

$$\begin{aligned} &(\operatorname{inc}(P)) = 4s_{2^2} + 4s_{2,1^2} + 4s_{1^4} \\ &= 4 \begin{vmatrix} e_2 & e_3 \\ e_1 & e_2 \end{vmatrix} + 4 \begin{vmatrix} e_3 & e_4 \\ e_0 & e_1 \end{vmatrix} + 4e_4 \\ &= 4e_{2^2} - 4e_{3,1} + 4e_{3,1} - 4e_4 + 4e_4 \\ &= 4e_{2^2}. \end{aligned}$$

Let G be a graph with V = [n] and $\kappa : [n] \to \mathbb{P}$ be a proper coloring. An *ascent* of κ is an edge *ij* with

- 1. i < j, and
- 2. $\kappa(i) < \kappa(j)$.

Let asc κ be the number of ascents of κ .

Ex. 40 (1)
 (3) 30 ascents: 23 since
$$\kappa(2) = 20 < 30 = \kappa(3)$$
,
34 since $\kappa(3) = 30 < 50 = \kappa(4)$.
20 (2) (4) 50 So asc $\kappa = 2$.

If t is a variable then the Shareshian-Wachs chromatic quasisymmetric function of a graph G with V = [n] is

$$X(G; \mathbf{x}, t) = \sum_{\kappa: V o \mathbb{P} \text{ proper}} t^{\operatorname{asc} \kappa} \mathbf{x}^{\kappa}.$$

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUI) then $X(inc(P); \mathbf{x}, t)$ is symmetric.

Conjecture (Shareshian-Wachs) If P is a NUI then $X(inc(P); \mathbf{x}, t)$ is e-positive. Let P be an NUI, and so a poset on [n], and let T be a P-tableau. An *inversion* in T is a pair $i, j \in [n]$ with

- 1. i < j,
- 2. i is in a lower row than j, and
- 3. i and j are incomparable in P.

Let Inv T be the set of inversions of T and inv $T = \# \operatorname{Inv} T$.

Theorem (Shareshian-Wachs) If P is an NUI and $X(inc(P); \mathbf{x}, t) = \sum_{\lambda} c_{\lambda}(t)s_{\lambda}$ then

$$c_{\lambda}(t) = \sum_{T \in \mathsf{PT}_{\lambda}(P)} t^{\operatorname{inv} T}.$$

Let #P = n and $\lambda \vdash n$. The e_h of largest subscript appearing in the determinant for s_λ is at the end of the first row. And in that case h is the hooklength of the (1, 1) box of the diagram of λ . So if h = n then λ is a hook. Furthermose e_n only occurs with the permutation $\pi = c, 1, 2, ..., c - 1$ where $c = \lambda_1$. So if λ is a hook then let the *sign* of a P-tableau T of shape λ be

$$\operatorname{sgn} T = \operatorname{sgn} \lambda = (-1)^{c-1}.$$

If λ is a hook then its *arm* and *leg* are the boxes in the first row, respectively first column, except (1,1).

 $\pi = 51234$ $\operatorname{sgn} \lambda = (-1)^{5-1} = 1.$

 $A = \operatorname{arm}, L = \operatorname{leg}.$

Let P be an NUI on [n] and T be a P-tableau. Call $k \in [n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

- 1. the resulting tableau T' is a P-tableau, and
- 2. Inv T = Inv T'.

Ex. 5

$$P = 2 \bullet 3 \bullet 4$$
 $T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$ Inv $T = \{23, 45\}$

3 is moveable with $T' = \begin{bmatrix} 1 & 5 \\ 3 \\ 2 \\ 4 \end{bmatrix}$. 5 is moveable with $T' = \begin{bmatrix} 1 & 3 \\ 2 \\ 5 \\ 4 \end{bmatrix}$.

2 and 4 are not moveable.

Lemma (Hamaker-S-Vatter)

If k is moveable in T, then there is a unique position to which it can be moved.

If k is moveable in T then let T^k be the result of moving k. Define a map ι on P-tableau T of hook shape by

 $\iota(T) = \begin{cases} T^k & \text{if } k \text{ is the smallest integer which is moveable in } T, \\ T & \text{if no element in } T \text{ is moveable.} \end{cases}$

Theorem (Hamaker-S-Vatter)

Let P be any NUI on [n].

- 1. *ι* is a sign-reversing, Inv-preserving, involution on hook *P*-tableaux.
- 2. If T is fixed by ι then it has shape 1^n .
- The coefficient c_n(t) of e_n in X(inc(P); x, t) has nonnegative coefficients. It is the generating function by inv of P-tableaux of column shape with no moveable elements.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $uv \in G$ by one of the arcs uv or vu. Call O acyclic if it has no directed cycles. If V = [n] then an ascent of O is an arc vj with i < j, and we let asc O be the number of ascents of O.

Theorem (Stanley, Shareshian-Wachs)

If P is an NUI on [n] and $X(\mathrm{inc}(P);\mathbf{x},t)=\sum_{\lambda}c_{\lambda}(t)e_{\lambda}$, then

 $\sum_{\lambda \text{ with s parts}} c_{\lambda}(t) = \sum_{O \text{ with s sinks}} t^{\text{asc }O}.$ So if $\lambda = (n)$ then $c_n(t) = \sum_{O \text{ with 1 sink}} t^{\text{asc }O}.$ Given a *P*-tableau *T* of shape (1^n) we define an orientation *O* of G = inc P by orienting each edge *ij* of *G* so that

if is an arc of O iff $ij \in Inv T$.

Conjecture (Hamaker-S-Vatter)

For any NUI, the map $T \mapsto O$ above is an inv-asc preserving bijection from P-tableaux with m moveable elements to acyclic orientations of inc(P) with m + 1 sinks.

Related work.

Shareshian and Wachs used an involution which is similar to, but not the same as, the involution for e_n in their determination of the coefficient of p_n in $X(inc(P); \mathbf{x}, t)$.

There have been other applications of The Method The *height* of a poset P, ht P, is the number of elements in a longest chain. If Pis an NUI then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the (3 + 1)-free conjecture for $X(inc(P); \mathbf{x}, t)$ when ht P = 2 using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method. Cho and Hong used The Method to prove the (3+1)-free conjecture for $X(inc(P); \mathbf{x})$ when ht P = 3. Finding a proof for $X(inc(P); \mathbf{x}, t)$ when ht P = 3 is still open, but certain special cases have been done using involutions by Cho and Hong, and by Wang usint the inverse Kostka matrix in place of the Jacobi-Trudi determinant.

References

1. Cho, S.; Hong, J. Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3. *Electron. J. Combin.* 29 (2022), Paper No. 2.19, 37 pp.

2. Cho, S.; Huh, J.; On e-positivity and e-unimodality of chromatic quasisymmetric functions. *SIAM J. Discrete Math.* 33 (2019), 2286–2315.

3. Harada, M.; Precup, M. The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture. *Algebr. Comb.* 2 (2019), 1059—1108.

4. Sagan, B.; Vatter, V.. Bijective proofs of proper coloring theorems. *Amer. Math. Monthly* 128 (2021), 483–499.

5. Shareshian, J.; Wachs, M. Chromatic quasisymmetric functions. *Adv. Math.*, 295 (2016), 497–551.

6. Stanley, R. A symmetric function generalization of the chromatic polynomial of a graph, *Adv. Math.*, 111 (1995), 166–194.

7. Stanley, R.; Stembridge, J. On immanants of Jacobi-Trudi matrices and permutations with restricted position. *J. Combin. Theory Ser. A* 62 (1993), no. 2, 261–279.

8. Wang, S.; The *e*-positivity of the chromatic symmetric functions and the inverse Kostka matrix, arXiv 2210.07567.

THANKS FOR LISTENING!